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Learning and attention reveal a
general relationship between
population activity and behavior
A. M. Ni, D. A. Ruff, J. J. Alberts, J. Symmonds, M. R. Cohen*

Prior studies have demonstrated that correlated variability changes with cognitive processes
that improve perceptual performance.We tested whether correlated variability covaries
with subjects’ performance—whether performance improves quickly with attention or slowly
with perceptual learning.We found a single, consistent relationship between correlated
variability and behavioral performance, regardless of the time frame of correlated variability
change.This correlated variability was oriented along the dimensions in population space
used by the animal on a trial-by-trial basis to make decisions.That subjects’ choices
were predicted by specific dimensions that were aligned with the correlated variability
axis clarifies long-standing paradoxes about the relationship between shared variability
and behavior.

T
he responses of pairs of neurons to re-
peated presentations of the same stimu-
lus are typically correlated [quantified as
noise correlations, or spike count correla-
tions (rSC)] (1, 2). Prior electrophysiological

studies have shown that these correlations change
with cognitive processes that affect perceptual
performance (2–4). However, theoretical work
has suggested that this correlated variabilitymay
not affect the information encoded by a neuronal
population in a manner that influences a sub-
ject’s decisions (5, 6).

We therefore measured the relationship be-
tween neuronal population activity and per-
formance by studying two processes that both
improve visual performance but on very dif-
ferent time scales: attention (7) and percep-
tual learning (8). By observing attention and
learning in the same behavioral trials and
neuronal populations, we identified the dimen-
sions of population activity that matter most for
behavior.
We recorded from neuronal populations in V4

(3, 4, 7–9) in two rhesus monkeys with chron-

ically implanted microelectrode arrays (3). The
monkeys detected changes in the orientation of
either of two Gabor stimuli (Fig. 1A): one placed
within the receptive fields (RFs) of the recorded
neurons and one in the opposite hemifield (Fig.
1B). We measured attention effects within a
single session and learning effects across sessions
(Fig. 1C).
Attention and perceptual learning improved

performance and affected neuronal population
responses in similar ways (Fig. 2 and figs. S1 and
S2). Both processeswere associatedwith decreases
in the mean-normalized trial-to-trial variance
(Fano factor) of individual units and the cor-
related variability between pairs of units (Fig. 2,
C, D, J, and K) in response to repeated presenta-
tions of the same stimulus (figs. S3 and S4).
These variability changes occurred only in the
context of the task (variability measured dur-
ing passive fixation was constant throughout
training) (Fig. 2, F, G, M, and N).
Recent theoretical work suggests that only

correlated variability along the dimensions in
neuronal population space that encode task-
relevant stimulus information can limit informa-
tion coding (5, 6). Determining whether correlated
variability lies along these dimensions is exper-
imentally unfeasible because it would require
recordings from a very large number of neurons
over an even larger number of trials.
Instead, we assessed the importance of

attention- andperceptual learning–related changes
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Fig. 1. Methods and behavior. (A) Orientation change-detection task with cued attention (3). (B) RF
centers of recorded units from example session (black circles). Gray circles illustrate Gabor locations; the
red circle illustrates representative RF size. (C) Methodology for quantifying attention- and learning-related
changes in detection sensitivity (d′). Best-fitting exponential functions plotted with SEM. Heat map
illustrates session number. (Insets) Psychometric curves for two example sessions.
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in correlated variability by investigating their
relationship to behavior. There was a single,
robust relationship between correlated variability
and perceptual performance, whether changes in
performance happened quickly (attention) (Fig. 3,
A and B) or slowly (learning) (Fig. 3, C and D).
This relationship was robust even when we re-
moved the main effects of attention and learning
(Fig. 3, E and F).
We analyzed the responses of V1 neurons

(7, 8) in animals performing the same atten-
tion task. Unlike in V4, correlated variability in
V1 was not correlated with performance (fig. S5).
Both attention and perceptual learning im-

proved the performance of a cross-validated,
optimal linear stimulus decoder (fig. S6). How-
ever, the relationship between correlated varia-
bility in V4 and performance (Fig. 3) seems at
odds with theoretical work that suggests most
correlated variability should not affect the stim-
ulus information that can be gleaned from an
optimal decoder (6).
To examine the relationship between cor-

related variability and performancemore directly,
we developed a single-trial measure of correlated
variability. We performed principal component
analysis (PCA) on population responses to the
same repeated stimuli used to compute spike
count correlations (fig. S3),meaning that the first
PC is by definition the axis that explains more of
the correlated variability than any other dimen-
sion (Fig. 4, A and B, x axis). Consistent with the
recent observation that correlated variability is
typically low dimensional (10–12), the variance
explained by the first PC was strongly related
to themagnitude of correlated variability in each
session, evenwhenwe accounted for the changes
caused by attention and learning (Fig. 4, C andD,
and fig. S7) and trial-averaged firing rates (figs.
S8 to S11). Like correlated variability (Fig. 3),
the proportion of variance explained by the first
PC was correlated with behavioral performance
(d ′) across all sessions [Monkey 1, correlation
coefficient (R) = –0.42, P < 10−13; Monkey 2,
R = –0.62, P < 10−15].
These analyses show that projection on this

first PC is a suitable proxy for pairwise spike
count correlations. We used this measure to
assess the importance of correlated variability
to the monkey by determining whether popula-
tion activity along this first PC can predict the
monkey’s choices on a trial-by-trial basis.
Activity along this first PC (and therefore

correlated variability) had a much stronger re-
lationship with the monkey’s behavior than it
would if the monkey used an optimal stimulus
decoder. A linear, cross-validated choice decoder
(Fig. 4A) could detect differences in hit versus
miss trial responses to the changed stimulus from
V4 population activity along the first PC alone as
well as it could from our full data set (Fig. 4, E
and F, and fig. S12). By contrast, although the
performance of the stimulus decoder (Fig. 4A)
at detecting differences in V4 neuronal popula-
tion responses to the previous stimulus (the
stimulus before the change) versus the changed
stimulus was unsurprisingly better overall than

the performance of the choice decoder (Fig. 4,
E and F, insets), the relative influence of the
first PC was weaker. The performance of the
stimulus decoder was much worse when based
on the first PC alone versus our full data set
(Fig. 4, E and F).
It is difficult to determine from extracellular

recordingswhether choice-predictive signals come
from a bottom-up, causal relationship between
sensory responses and decisions or from trial-to-
trial variability from cognitive factors or post-
decision signals (13). A recent study identifying
the directionality of choice-predictive signals in
mouse sensory cortex found that they are both
bottom-up and top-down in origin (14). However,
the time course of the choice-predictive activity
in our data suggests that it occurs before the
decision is made. We based our choice decoder
on the first 70 ms of the evoked responses (after
accounting for the response latency of V4 neu-
rons). Choice-predictive activity was as strong
in the first half of this time frame (60 to 95 ms)
as in the second half (96 to 130 ms; paired t test
permonkey, P > 0.05). That the choice-predictive
activity described here was present during the
full decision-making period suggests that it did
not reflect post-decision feedback.
Our results, combined with functional imag-

ing in humans (8) and other multielectrode re-
cording studies (15, 16), suggest that learning is

best studied by focusing on populations of neu-
rons. Functional imaging studies, which usemea-
sures that are related to the activity of large
neural populations, find consistent learning-
related changes in both V1 and V4 (8, 17), as
opposed to single-unit studies (8). Similarly,
attention studies suggest that changes in pop-
ulation sensitivity are largely explained by cross-
neuron correlations as opposed to single-neuron
effects (3, 4).
The robust relationship between correlated

variability and perceptual performance suggests
that although attention and learningmechanisms
act on different time scales (fig. S13), they share
a common computation. Some characteristics
of this computation are informedby recent studies
showing that changes in a low rankmodulator can
account for the attention-related changes in rate,
Fano factor, and correlated variability (11, 12). At-
tention and learning may decrease the strength of
such a modulator by changing the balance of in-
hibition and excitation (10), which may improve
information coding and the information that is
communicated downstream (18).
Our most puzzling finding is that the

attention- and learning-related changes in
average noise correlation were so closely linked
to performance but would likely have a minimal
effect on performance if the monkeys read out
visual information optimally. Similarly, a prior
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Fig. 2. Summary of behavioral and neuronal effects of attention and perceptual learning. All
changes were significantly different than 0 except where indicated (t tests; P < 10−3). Conventions are as
in Fig. 1C. (A and H) Sensitivity (d′) increased with both attention and learning. (B, E, I, and L) Evoked
response (firing – baseline rate) increased with attention but did not change consistently with learning or
passive fixation (P > 0.05). (C, D, J, and K) Fano factor and correlated variability decreased with
attention and learning, but (F,G, M, and N) not during passive fixation (P > 0.05).
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study found that correlations depend on training
experience but did not find a relationship be-
tween shared variability and information coding
(19). Correlated variability should only affect
the performance of an optimal decoder when it
is aligned with the stimulus dimension being
decoded (6). Therefore, the relationship between
correlated variability and performance suggests
that our monkeys performed suboptimally.
We thus hypothesize that sensory information

is decoded in a way that is optimal for the large

number of stimuli and tasks that the animals
encounter in their natural environment rather
than the particular set of stimuli in our task. Tra-
ditionally, optimal decoders are trained to dis-
criminate a particular set of stimuli that vary
only in one stimulus dimension. This scenario
implies a two-step decision process: identifying
the stimulus (to optimize the decoder) and then
decoding it. If animals could successfully identify
the stimulus, theywould perform perfectly on our
change-detection task.

Instead, animals may use a more general de-
coder that could, for example, identify the orien-
tation of any stimulus in any task, meaning that
optimal weights would be tuned and noise cor-
relations related to all stimulus features for which
the neurons are selective. Noise correlations de-
pend on tuning similarity for all stimulus fea-
tures (6). Therefore, correlated variability is likely
aligned with the dimension that is decoded by a
general decoder, meaning that noise correlation
decreases would improve performance. Several
of the studies that suggest monkeys do behave
optimally are those that usedmultisensory stimu-
li (20). Determining whether there is evidence
that monkeys use decoders that are optimized
for diverse stimuli and taskswill be an important
avenue for future work. Our results suggest that
the relationship between behavior and popula-
tion activity is a powerful tool for understanding
neural computation.
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Fig. 3. The relationship
between correlated
variability and
performance is the
same for attention and
perceptual learning.
Mean rSC and d′ were sig-
nificantly correlated across
sessions (P < 10−3).
(A and B) Relationship
between rSC and d′
was indistinguishable
between attention
conditions (Fisher z Pearson-
Filon tests; P > 0.05).
(C and D) Relationship
between rSC and d′ was
indistinguishable for
the first versus second
half of learning (P > 0.05).
(E and F) Relationships persisted after removing attention and learning effects (residuals of exponential
fits in Fig. 2; P < 10−3; analyses of variance, P > 0.05).
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perception of attended stimuli, and perceptual learning, which improves perception of well-practiced stimuli. These two
between neuronal population activity and performance in monkeys. They investigated attention, which improves 

 measured the relationshipet al.single neurons but subspaces of the complete population activity. To test this idea, Ni 
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